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Resurgence and QCD

• The behavior of observables are  
described by a trans-series


• Sum includes contributions which 
are not topologically stable, such 
as an instanton-anti-instanton 
contribution. 


• Applies even in theories without 
topologically stable objects.


• Deep connection between 
perturbative and non-perturbative 
sector. 
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• QCD: Argyres and Unsal, 2012.


• CPN-1: Dunne and Unsal, 2012.


•  Quantum Mechanics, Dunne and Unsal, 
2013.


• Principal Chiral Model: Cherman et al., 
2013, 2014.


• Self-dual model: Basar et al., 2013.



• Asymptotically free (like QCD)


• instantons (like QCD):


• XY model vortices emerge as constituents 
of instantons (like monopoles in QCD)


• Can deform O(3) model into an XY model 
with h negative G2 and mco, 1981; Affleck, 1986.


!

• Vortices responsible for KT critical behavior 
and for mass gap

O(3) model in d=2: the XY limit
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• h positive changes the boundary 
conditions to σ3=±1 at infinity.


• h breaks the classical scale invariance of 
the O(3) model and determines instanton 
size. 


• The interpretation of an instanton as a 
vortex-antivortex pair is lost.


•  instantons look like flipped spin in Ising-
model low-T expansion.


O(3) model in d=2: the Z(2) limit
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Phase diagram of deformed O(3) model
• Adiabatic continuity: the 

unbroken, high-T phase of the 
Ising model is continuously 
connected to the high-T phase of 
the XY model via deformation of 
O(3).


• σ32 tells us where we are in the 
phase diagram.


• O(N) models with N>3 do not 
have stable instantons, but have 
XY and Ising deformations!


• Smallest charge vortices 
suppressed at θ=π, and higher-
charge excitations must be 
included (Affleck, 1986, 1991).
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• Coupling gets weak as T gets large


• Modify action to restore Z(N) symmetry  
and force the theory to be Abelian at 
large distances


‣ double trace deformation        
(Meyers and mco, 2008) 

!

‣ adjoint fermions (Unsal, 2008)


• A4 behaves as a 3d scalar with a 
center-symmetric expectation value; 
Euclidean monopoles solutions!

High-T confinement on R3 x S1: restoring Z(N)
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• Euclidean monopoles are constituents of 
instantons (Lee & Yi, 1997, Kraan & van 
Baal 1998)  and confine (Unsal 2008; Unsal 
and Yaffe, 2008). 

• Dimensional reduction yields confinement 
as in 3d Georgi-Glashow model (Polyakov 
1976) by monopole gas


• Monopole gas is represented by a sine-
Gordon model for SU(2):


!

• Program works on lattice as well mco, 
2012 and in press.

High-T confinement on R3 x S1: topology
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High-T confinement on R3 x S1: phase diagram

• Positive HA   promotes Z(2) 
breaking and decreases the 
deconfinement temperature


• Negative HA   increases the 
deconfinement temperature


• Deconfinement transition 
changes from 2nd-order to 
1st at tricritical point (location 
and existence are non-universal- 
H. Nishimura & mco, 2012


• Reach region of high-T 
semiclassical confinement
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More about the phase diagram

• TrAP determines where we 
are in phase diagram.


• Ising limit: TrAP=2


• pure gauge: TrAP~0


• U(1) limit: TrAP=-1


• The SU(2) phase diagram 
has the form of a Blume-
Emery-Griffiths model; the 
tricritical point has non-Ising 
critical indices.
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• In semiclassical region of SU(N), inclusion of only the lightest monopole states 
gives a generalized sine-Gordon model based on the affine roots of SU(N) 
Unsal and Yaffe, 2008.


• This in turn leads to unsatisfying results for string tension Meisinger and mco, 
2010. 


• Inclusion of all roots with equal with equal ξ is  
known to lead to string tension Casimir scaling  
Giovannangeli and C.P. Korthals Altes, 2001.
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Lattice U(1)N models

• Start from a Villain U(1)N system:
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• The remaining degrees of freedom can be integrated out, giving a 
Coulomb gas representation:
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Lattice U(1)N-1 models

• We can restrict U(1)N to U(1)N-1 using  a periodic delta function:

• This gives rise to an electric interaction in the Coulomb gas representation:

• Similarly, we can add a potential term that favors or disfavors the Z(N) 
center subgroup of SU(N). 


• On R3 × S1, the dominant terms will be short monopole world lines with 
m4a=+1 and m4b=-1 for some a≠b. This leads naturally to Casimir scaling 
when center symmetry is unbroken.
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Conclusions

• Double trace deformations allow us to interpolate between the U(1)N-1 
instanton gas picture of confinement and a Z(N) gauge theory, with the pure 
gauge theory in the middle.


• TrAP indicates where we are in the phase diagram, with the system behaving 
as a generalization of the BEG model.


• Calorons change their role in moving between regions, but are important 
throughout.


• Casimir scaling is associated with the inclusion of monopoles on a 
democratic basis, and appears naturally in a U(1)N-1 lattice model.


